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Introduction

The identification of potentially toxic compounds in the early phases of the
pharmaceutical drug discovery process has become an appealing strategy (Durham
and Pearl, 2001). However, toxicological studies are time and cost intensive and for
that reason it has been difficult to address toxicological issues in the early discovery
phase. In-silico toxicology approaches investigating relationships between chemical
structures and their toxicological effects present a fast and inexpensive alternative to
in-vivo experiments and have for that reason drawn quite some attention. However it
has been questioned whether in-silico approaches have reached the degree of maturity
and robustness that enables them to compete with the classical experiment.

The 2™ Predictive Toxicology Challenge (PTC) forms an interesting forum to test the
predictive power of novel machine learning and statistical approaches, to evaluate the
transparency of the resulting in-silico models, and to quantify their robustness (Helma
et al., 2001). In this extended abstract we summarize our efforts to develop
quantitative structure-activity relationships (QSAR) models for the 4 different
sex/species data sets. In the Material and Methods section first the data set is
introduced that is used during this study. Next the different methods are described that
are evaluated for selecting an optimal set of descriptors. Finally we will briefly
describe the prediction of the carcinogenic potential of a compound for the different
sex/species models.

Material and Methods

Data

The data set that is used in the PTC consists of 417 chemicals with corresponding
classifications. During the data engineering stage of the PTC over 1000 descriptors
are submitted. In this study the 115 descriptors submitted by the authors are used
only. Table 1 lists the submitted descriptors. Besides descriptors which characterize
structural properties (CRIPPENI1-CRIPPEN72), several descriptors are used that
describe certain physicochemical properties of the 417 chemicals. Furthermore
density functional theory is used to calculate some electronic descriptors. The last
rows of table 1 show the descriptors that are determined using the autocorrelation
method with the atomic molecular orbital LUMO or HOMO coefficients as atomic
property. The autocorrelation method is typically used to quantify the local
distribution of a certain atomic property within the molecule. Finally, the whole set of
descriptors is enriched with simple 1D descriptors providing simple counts of certain
molecular properties.

In this study the NTP classifications P (positive), CE (clear evidence) and SE (some
evidence) code for carcinogens, while N (negative), NE (no evidence), E (equivocal)
and EE (equivocal evidence) code for non-carcinogens. Chemicals with a missing



classification and with the classification IS (inadequate study) are excluded from
further calculations.

Methods

In order to extract the most relevant properties for model building a two stage
procedure is applied. In the first stage, frequency and correlation analyses are applied
to all descriptors. Descriptors are dropped either when they are not sufficiently
represented in the data set (< 5 occurrences) or the pairwise correlation is higher than
0.9. Of the 72 atom type descriptors according to Wildman & Crippen, 22 are dropped
due to the frequency analyses. During the correlation analyses, 4 Wildman & Crippen
descriptors and 7 other descriptors are removed (CMR, SLOGP, SMR, HBA, LOGD
(pH=7.4), VOLUME and EL._NEG). By means of these analyses the initial number of
descriptors is reduced from 115 to 82.

Table 1. The initial set of 115 descriptors.

Descriptors

1-72 CRIPPEN 1 - Atom type descriptors according to Wildman and Crippen, 1999.
CRIPPEN 72

73 CLOGP Calculated logP using Daylight program.
74 CMR Calculated molar refractivity using Daylight program.
75 SLOGP Calculated logP according to Wildman and Crippen, 1999.
76 SMR Calculated molar refractivity according to Wildman and Crippen, 1999.
77 ROTBOND Number of single, non-cyclic bonds.
78 FLEX Degree of flexibility (0 rigid, 1 extremely flexible).
79 TPSA Topological polar surface area according to Ertl et al., 2000.
80 MW Molecular weight.
81 HBD Number of H-bond donors.
82 HBA Number of H-bond acceptors.
83-85 LOGD (2, 7_4, 10) Calculated logD at pH=2.0, 7.4 and 10.0.
86 VOLUME Volume based on CORINA generated conformations.
87 SURF_AREA Surface area based on CORINA generated conformations.
88 DISTANCE VOLUME / SURF_AREA.
89 HOMO HOMO energy based on CORINA generated conformations, using density functional theory.
90 LUMO LUMO energy based on CORINA generated conformations, using density functional theory.
91 DIPOLE Dipole based on CORINA generated conformations, using density functional theory.
92 HARDNESS Calculated hardness using HOMO and LUMO energies.
93 SOFTNESS Calculated softness using HOMO and LUMO energies.
94 EL_NEG Calculated electronegativity using HOMO and LUMO energies.
95 EL_PHIL Calculated electrophilicity using HOMO and LUMO energies.
96-100 ATOM_LUMOI Autocorrelation vector using atomic molecular orbital coefficients of LUMO.
101-105 ATOM_HOMOI1 Autocorrelation vector using atomic molecular orbital coefficients of HOMO.
106-110 | ATOM_LUMO2 ATOM_LUMOI1 x LUMO.
111-115 | ATOM_HOMO2 ATOM_HOMO1 x HOMO.

Up till now descriptors are dropped solely on the basis of information in the descriptor
space (the input variable space). In the second stage of the variable selection
procedure, several variable selection methods are applied that additionally use the
carcinogenicity classifications (output/target values). Ultimately this will result for
each of the 4 different sex/species data sets in 4 optimized sets of descriptors that will
be used in the final modeling.

The first applied variable selection method (the R*-method) starts by calculating the
squared correlation coefficient (R?) between each descriptor and the classification
results. Descriptors with a R* less than a cutoff criterion (0.005) are dropped. The
remaining descriptors are used in a forward stepwise regression. First the descriptor
with the highest R? is selected to be used as input for the regression. Next descriptors
are added to the input until no significant improvement of the regression model
occurs. The descriptors that have been kept to perform the regression analysis are
considered to be the most significant descriptors and will be used to construct the final




model. In the y*-method the relationship between a descriptor and the classification is
examined by first decomposing each descriptor into several binary dummy variables.
Next two-way frequency tables are created (binary descriptor against binary
classification). The y’-test is used to examine if the observed frequencies differ
significantly from the expected frequencies. If the observed frequencies differ from
the expected frequencies the descriptor is considered relevant and will be used to
construct the final model. The last two variable selection methods are very similar. In
both applications a global optimization algorithm (a genetic algorithm (GA)) is used
to find an optimal subset of descriptors that gives the best classification results for a
given modeling technique. In the GA-PLS variable selection method partial least
squares regression (PLS) is used to model the relationship between carcinogenicity
and structure information. The GA-LR method uses logistic regression as modeling
technique. To prevent the modeling techniques from overfitting, in both cases cross-
validation is applied.

Table 2. Results of four different variable
selection methods on the male rat data set.
Variable Selection Method

R° | x° | GA-PLS | GA-LR

Variables

CRIPPEN 1 X x

CRIPPEN 2 x x

CRIPPEN 5 x

CRIPPEN 11 X X X

CRIPPEN 12 X X X

CRIPPEN 21 x

CRIPPEN 22 X X X

CRIPPEN 29 X

CRIPPEN 30 X

CRIPPEN 34 X

CRIPPEN 35 X

CRIPPEN 36 X X

CRIPPEN 37 X X X

CRIPPEN 39 X X

CRIPPEN 41 x

CRIPPEN 49 % %

CRIPPEN 54 X X

CRIPPEN 57 X

CRIPPEN 58 X

CRIPPEN 63 X

CRIPPEN 64 X X X X

CRIPPEN 67 %

CRIPPEN 68 X

Finally for each sex/species target, the optimized set of descriptors is used to train a
backpropagation neural network (NN). This results in four different models predicting
carcinogenicity for the male rat (MR), the female rat (FR), the male mouse (MM) and



the female mouse (FM). All calculations are performed using Matlab and SAS
EnterpriseMiner software.

Results & Discussion

Because for most modeling techniques the number of descriptors they can deal with is
limited, significant descriptors (variables) have to be selected prior to modeling. The
male rat classifications are used to examine the efficiency of different variable
selection methods. In table 2 the results of the four variable selection methods on the
Wildman & Crippen descriptors are shown. For clarity reasons the selection results of
the other descriptors are left out. While the R*-method and the GA-based methods
each select more than 10 variables, the x*-method selects 2 descriptors only: the atom
type descriptors corresponding to the total number of 1° and 2° aliphatic carbons and
bromines respectively. Indeed almost all chemicals containing bromine are
carcinogens causing an unbalanced frequency table and a negative x’-test. Not only
the x*-method selects this descriptor but all selection methods recognize that this
descriptor is important for modeling. When the table is further examined we see that
the selected variables of the R>method and the GA-based methods are very similar.
By means of the variable selection methods the number of significant descriptors
could be reduced to about 15% of the original descriptor set.

To see how these different variable selection methods influence the predictions of the
classifications models both logistic regression (LR) and neural network (NN) models
are constructed using the optimized descriptor sets. In table 3 the results are
visualized.

Table 3. Male rat concordances of the different logistic
regression and neural network models created on the basis of
descriptor sets generated by the different variable selection
methods.
Concordance (%)
variable modeling training validation
selection method technique

LR
R’ 68 57
x 62 52
GA-PLS 69 54
GA-LR 69 58

NN
R’ 76 60
x 64 58
GA-PLS 74 62
GA-LR 73 58

Although no variable selection methods are used that are capable of discovering
significant non-linear interactions between the descriptors and the classifications, for
all optimized descriptor sets the NN gives better results than the LR. Furthermore for
each model the concordance of the validation set (30% of the available objects) is
considerably lower than the concordance of the training set (70 % of the available
objects). On the basis of these concordance results no clear preference can be given
for one of the variable selection methods. There is no selection method that performs
significant better than the other methods. At the very most, the worse performance of
the yx*-method in combination with the NN is noticed.



Table 4 shows the selected descriptors by means of GA-PLS for the male and the
female rat/mouse classifications (MR, FR, MM and FM respectively).

Table 4. | Selected descriptors by GA-PLS for the different species/sex models.

model selected descriptors

MR CRIPPEN: 11, 12, 22, 36, 37, 39, 49, 54, 58, 63, 64
MW; ATOM_LUMOI1; ATOM_HOMOI1; ATOM_HOMO2

FR CRIPPEN: 3, 11, 12, 22, 30, 34, 37, 39, 51, 54, 63, 64
MW; LOGD (pH=10); DIPOLE; ATOM_HOMO1; ATOM_HOMO2

MM CRIPPEN: 1, 8, 11, 25, 30, 34, 36, 49, 54, 55, 59, 67
TPSA; MW; HARDNESS; ATOM_LUMO1; ATOM_HOMOI1; ATOM_HOMO?2

FM CRIPPEN: 3, 23, 30, 34, 37, 40, 49, 68
DISTANCE; DIPOLE; ATOM_HOMO2

Because the classification results for MR and FR are highly correlated, the GA-PLS
method has selected similar descriptors (for the most part structural and electronic
descriptors) to create the two different rat models. The selected descriptors for the
mouse models are far less similar. This is probably caused by the relative large
number of compounds in the data set that have carcinogenicity classifications for the
male or female mouse only but no classifications for both sexes.

Because in table 3 the best results are obtained with a NN, this modeling technique is
also used to create the final models for the different sex/species carcinogenicity
classifications. Again 70 % of the available data is used to create the model and 30 %
is used for validation purposes. Concordances of 62% and 74% for male and female
rat indicate that the NN has difficulties modeling carcinogenicity. Concordances of
about 60 % for the male and female mouse confirm this. Although the number of
descriptors is significantly reduced, no satisfactory results have been obtained accept
for the female rat.

Conclusion

The total number of available descriptors that can be used to model structure activity
relationships is growing constantly. Because most modeling techniques are designed
to deal with a limited number of descriptors and it is not always clear which
descriptors should be used for certain applications, variable selection methods, which
search for the optimal subset of descriptors, are necessary. In the PTC also a large
number of descriptors are available and as a consequence several different variable
selection methods are applied and evaluated. Although different variables are selected
by the different methods, on the basis of the performances of the corresponding
models no clear preference can be given for one of the methods.
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