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Abstract. This paper describes my submission to one of the sub-problems
formulated for the Predictive Toxicology Challenge 2001. The challenge
is to predict the carcinogenicity of chemicals based on structural infor-
mation only. I have only tackled such predictions for bioessays involving
male rats. As we currently do not know the true predictions for the test-
set, all we can say is that one of the models supplied by us seems to be
optimal over some subrange of the ROC spectrum. The successful model
uses a voting approach based on most of the sets of structural features
made available by various other contestants as well as the organizers in an
earlier phase of the Challenge. The WEKA Machine Learning workbench
served as the core learning utility. Based on a preliminary examination
of our submission we conclude that reliable prediction of carcinogenicity
is still a far away goal.

1 Introduction

Environmentally-induced cancers are a serious health problem. All relevant data
was collected by the US National Toxicology Program (NTP) which conducts
standardized chemical bioassays. The Predictive Toxicology Challenge was ini-
tiated to motivate Machine Learning researcher into tackling this important
prediction problem.

In the first stage various research groups generated sets of features that they
thought would be relevant in predicting carcinogenicity. All these were made
available from the PTC webpage [4]. We used six of those feature sets as well as
one additional set we generated locally. The next section will discuss how single
classifiers for each of those sets were first selected and then combined into a final
two-level model. The section thereafter will then discuss the seven base-level
models in some detail. Finally, we draw a few pessimistic conclusions.

2 Selecting and Voting Classifiers

Two very useful pieces of applied machine learning knowledge are:



— Using the right features makes all the difference.
— Ensembles of classifiers usually outperform single classifiers.

Following that advice we initially downloaded everything available, converted
it all into an appropriate format for our tools!, and did a couple of initial exper-
iments trying to get “a feel” for the problem. These initial results were rather
disappointing. All algorithms that we tried performed rather poorly. Basically
two findings were made:

1. No single method improved prediction by more than 10 percentage points
over the default prediction. 65% proved to be the limit.

2. Methods like logistic discriminant, linear support vector machines and Naive
Bayes classification outperformed decision-tree or rule-based learning meth-
ods. Interestingly, all these methods can be thought of as alternative ways of
computing a single hyperplane separating two classes. Like in text classifica-
tion, these methods seem to do well in domains where there is an abundance
of weak features, but no need or possiblity of forming reasonable logical
combinations of features.

These rather disappointing results caused us to search for alternative feature
sets, hoping that these might improve prediction. Most of these attempts were
futile as well, only one attempt of capturing some three-dimensional knowledge
performed on a par with the better ones of the supplied feature sets. Conse-
quently, we decided to use the following seven feature sets to induce appropriate
classifiers for each set and to simply vote these classifiers for deriving final pre-
dictions. We have excluded any feature set where the improvements over default
accuracies were insignificant. The final feature sets are:

1. KULEUVEN features: a very small set of just 10 summary features. A logistic
discriminant was constructed.

2. SENS features: 13 features representing linear sub-fragments that were de-
rived in a class-sensitive manner. A logistic discriminant was constructed.

3. NTP features: a set of 24 physico-chemical descriptors of compounds. A bag
of 10 logistic discriminants was constructed.

4. DRAGON features: a set of 839 features computed by the DRAGON program.
A linear support vector machine was constructed.

5. FCSS codes: a set of 402 features supplied by the VINITI research group.
A linear support vector machine was constructed.

6. BoNDS3D features: 324 features capturing distances in 3D space between
various pairs of bonds.

7. BCI fingerprints: 5212 features describing substructures. A Naive Bayes clas-
sifier was constructed.

! The WEKA machine learning workbench is available under the Gnu Public License
and can be downloaded from http://www.cs.waikato.ac.nz/"ml



Voting these seven classifiers worked pretty well, adding a couple of percent-
age points lifting predictive accuracies to about 70% in cross-validation tests
over the training-set.

So when receiving the final test-set for prediction we were quite surprised
to find that almost no chemical was predicted to be carcinogenic. Obviously
voting by simply summing the predicted class probabilities returned from each
of the seven classifiers did not work as expected. Some inspection revealed that
most of the time if the more likely class was “carcinogenic”, its probability was
only slightly larger than 0.5, so a few strong votes for “non-carcinogenic” with
probabilities close to one could easily mask any indications of carcinogenicity.
Consequently we turned to categorical predictions for the seven base level learn-
ers. Table 1 depicts the distribution of “carcinogenic” votes over the test-set
compounds.

Table 1. Voting distribution: number of votes versus number of compounds receiving
exactly that number of “carcinogenic” votes.

Nyotes Mcompounds

0 72
1 55
2 37
3 11
4 6
5
6
7

2
2
0

Clearly, if we insist on a majority decision, only 2 + 2 4+ 6 = 10 compounds
would be classified as “carcinogenic”. So we decided to set a threshold such
that the predicted distribution would be similar to the distribution found in the
training-set, which is the only reasonable reference point available given the lack
of any further information. The exact same distribution could be generated by
a cutoff somewhere between one and two votes, so we submitted actually three
sets of predictions:

— Model M1: predicts “carcinogenic” if at least 1 of the seven classifiers says
so, which is a rather cautious approach trying to minimize false-negatives as
far as possible. M1 predicts “carcinogenic” for 113 of the 185 compounds in
the test-set.

— Model M2: predicts “carcinogenic” if at least 2 of the seven classifiers say
so. M2 predicts “carcinogenic” for only 58 compounds.

— Model M3: uses probabilities and adjusts the cutoff to closely mimic the
training-set distribution. M3 predicts “carcinogenic” for 83 compounds.

Model M1 is the best of these three models according to the Challenge orga-
nizers and is also optimal compared to all submissions for some range of error



cost as determined by the organizers using ROC curves (a good introduction to
ROC curves is given in [5]).

To judge the individual contribution made by each classifier one can look
at the number of compounds being predicted as “carcinogenic” by each clas-
sifier in total, as well as the number of compounds that are being predicted
“carcinogenic” uniquely by one classifier. Table 2 summarizes these numbers.

Table 2. Classifier contributions: total and unique counts of “carcinogenic” predictions
for each feature set.

Feature Set Total Unique

FCSS 66 24
NTP 35 7
DRAGON 28 6
BonDs3D 27 8
BCI 22 3
SENS 20 6
KULEUVEN 10 1

Clearly, the method contributing most is the classifiers built over the FCSS
features. There does not seem to be much of a difference between the remaining
ones. The KULEUVEN entry has to be taken with a pinch of salt as we were not
able to utilize the full set of features, just an extremely limited subset. Also, we
need to be careful with these kind of judgements, as we currently do not know
how many of these predictions are actually correct.

3 Individual classifiers

In this section we will describe the individual classifiers produced for the seven
sets of features. As all the learning methods used here basically are just esti-
mating a separating hyperplane, we depict each model as a kind of regression
equation, where we would predict “carcinogenic” if the outcome of the equation
is positive, and “non-carcinogenic” if the outcome is negative. For the smaller
sets of features we will give the full equations, for the larger feature sets this is
infeasible and pointless anyway, so we will only try to extract the most important
features.

How can one determine the importance of features in a regression equa-
tion? First of all the sign of the coefficient of each feature indicates the general
tendency: positive coefficients indicate features correlates positively with “car-
cinogenicity”, negative coefficients indicate the opposite. Of course this is only
true for positive feature values, but most of our feature values are positive. As
for judging the magnitude of influence, the coeflicients are not sufficient unfor-
tunately, as the ranges of values of different features may vastly differ. A useful



heuristic for estimating importance is provided by the absolute value of the prod-
uct of the coefficient and the mean of the respective feature. This value is the
average contribution to classification made by a particular feature. We will be
using this heuristic to sort small feature sets, and to extract the more important
features from larger sets.

In the following subsections we describe the seven base-level models. For
all features sets we have generally performed extensive experiments compar-
ing decision-tree and rule-based methods, logistic discriminants, support vector
machines, and Naive Bayes as well as bagging and boosting. Due to excessive
runtimes, for larger data-sets some methods proved infeasible, e.g. computing
logistic discriminants is least of the order of O(a?) where a is the number of at-
tributes. Clearly we cannot apply logistic discriminant to datasets like the BCI
fingerprint set featuring 5212 attributes per compound. The classifiers chosen
and reported below were the best-performing ones in cross-validations over the
training-set.

3.1 KULEUVEN features

This is the smallest set of all. Due to last-minute problems encountered in trans-
forming test-set features into the ARFF format mandated by WEKA, we finally
chose a very small set of just 10 summary features. Table 3 depicts the full
equation.

Table 3. The regression equation for the KULEUVEN feature set.

Coefficient|Coef f *+ Mean|Feature
-0.0552 -1.410|N_ATOMS: number of atoms
0.0006 0.127|D_FG: functional group distance
0.4372 0.119|N_ARO2N2: two aromatic rings with N atoms each
0.4372 0.119|N_ARO2N: two aromatic rings, one N at least
0.0082 0.070|N_FG: total number of functional groups
-0.2573 -0.048 MAX DELTA_CHARGE: maximal charge difference
0.0001 0.023| WEIGHT: molecular weight
-0.0065 -0.010|N_RING: number of rings
0.0500 0.008) MAX _DISTANCE: maximal distance between two atoms
-0.0047 -0.004N_AROMATIC: number of aromatic rings
0.7635 Intercept

Clearly, the features N_.ARO2N2 and N_ARO2N are collinear, and so one
should have been dropped. For a more detailed description of the features please
see the documentation supplied by the KULEUVEN group.



3.2 SENS features

These 13 features represent linear sub-fragments of compounds that were de-
rived in a class-sensitive manner by the Freiburg group. Table 4 depicts the full

equation.

Table 4. The regression equation for the SENS feature set.

Coeflicient |Coe f f * Mean|Feature

6.6183 0.8657|Br

-5.6828 -0.4461|Br-C

14.6016 0.3402|Br-C-C-Br
0.7179 0.0709|C-c:c:c:c:c:c-N
0.5704 0.0547|N-c:c-O

0.5704 0.0547|N-c:c:c:c:c:c-O
-0.1893 -0.0160|Br-C-C

0.0092 0.0015|c:c-c:c:c:c-N
0.0092 0.0015(c:c:c-c:c:c:c-N
0.0092 0.0015|c:c:c:c-c:c:c:c-N
0.0092 0.0015|c:c:c:c:c-c:cic:c-N
0.0184 0.0015(c:c:c:c:cic-c:c:c:c-N
0.0184 0.0015|N-c:c:c:c-c:c:c:c-N
-0.4892 Intercept

Clearly again we see quite a few collinear features which should have been
dropped at closer inspection. Still, the equation seems reasonable in qualita-
tive terms, according to my amateur knowledge of chemistry. The presence of
Bromium acts as a strong indicator for carcinogenicity, as does the presence of
both oxygen and nitrogen connected to an aromatic ring structure.

3.3 NTP features

This feature set consists of 24 physico-chemical descriptors of compounds sup-
plied again by the Freiburg group. The actual classifier induced for this feature
set is a bag of 10 logistic discriminants. To save space, we only depict one of
the ten regression equations in Table 5. Clearly the coefficients vary between the
various bags, but the ranking of the features is mostly the same, so reproducing
just one equation should be sufficient.

Obviously the first seven features heavily dominate the final decision.

3.4 DRAGON features

This feature set comprises 839 features as computed by the DRAGON program.
We just depict the top 15 features in Table 6. More information about the Dragon
program and generated feature set is available from the PTC webpage [4].



Table 5. The first of ten similar regression equations for the NTP feature set.

Coefficient|Coef f * Mean|Feature
-859.0440 -8036.27|IONIZATION_POTENTIAL
-479.3035 4477.94 HOMO
-386.3687 1865.19| ELECTRONEGATIVITY
-186.6642 1685.59| HOMO_LUMO
-2.4965 -915.47|TOTAL_ACCESS
2.5028 722.77\NON_POLAR_ACCESS
2.5204 196.38| POLAR_ACCESS
-0.4108 -9.06|POLARIZA
0.0023 -5.54/ TOTAL_ENERGY
-0.0002 2.93|ELECTRONIC_ENERGY
0.0124 2.83) MOLECULAR-WEIGHT
0.0358 2.81|PERC_NONPOLAR
7.1313 -2.22|LUMO
0.0005 1.90|STABIL
-0.0430 -1.14|DIPOLE
0.5135 1.08|LOGP
0.3726 0.98| POINT_CHG_DIPOLE
0.0523 0.47|LARGEST INNERATOMIC DISTANCE
-0.0089 0.20|STRAIN
-0.0008 0.17|DELTAHF
0.1665 0.14HYBRID DIPOLE
0.0025 -0.13|HEAT_OF _FORMATION
1.9928 0.13|CHARGE
-19.4291 -0.11|RADICAL
-3.1908 Intercept

3.5 FCSS codes

This feature set comprises 402 features expressed using the FCSS language
submitted by the VINITI research group from Russia. Again, just the top 15
features are depicted in Table 7.

For an interpretation of the attributes selected please refer to the document
describing FCSS available from the PTC webpage [4].

3.6 BoONDS3D features

This set of 324 features is a naive attempt to capture some kind of 3D informa-
tion about compounds. Basically distances in 3D space between various pairs of
bonds were computed. For each pair of types of bonds we count how many such
pairs are present and what their minimal and their maximal 3D distance is in
every compound. If some pair is not present, we use zero for both the minimal
and maximal distance, which is a reasonable null value in regression equations.
Actually this set of features is a subset comprising only those pairs, where one



Table 6. The top 15 features of the DRAGON feature set.

Coeflicient|Coef f * Mean|Feature
-0.4318 -12829.8|A106: TPCM total multiple path count
0.2608 3832.5|A142: SRW10 self-returning walk count order 10
0.1609 895.6|A112: GMTIV Gutman MTI valence vertex degrees
0.2288 539.4|A140: SRWO08 self-returning walk count order 8
0.0972 352.7|A111: SMTIV Schultz MTI valence vertex degrees
-0.1178 -285.5|A364: W3D 3D-Wiener index
0.0513 225.0|A78: IDMT total info-content distance magnitude
-0.4319 -142.0{A108: PCD diff of multiple path counts to path counts
0.0380 87.1{A120: SMTI Schultz Molecular topological index
0.1452 83.9|A141: SRW09 self-returning walk count order 9
0.0326 72.5|A100: GMTI Gutman Molecular topological index
0.1591 71.1|{A138: SRW06 self-returning walk count order 6
-0.1139 -62.3|A105: TPC total path count
-0.1083 -44.1|A366: DDI distance-distance index
-0.0927 -38.2|A382: Mor01lu 3D-MORSE signal 01

2.027163 Intercept

bond is either a single bond between two carbon atoms, or a single bond be-
tween a carbon atom and a hydrogen atom. There is no particular justification
for using this subset except for the fact that its cross-validation performance was
superior to all other subsets tested. Again, we just depict the top 15 features in
Table 8.

An attribute “n_C1C-HIN” represents the total count of pairs of bonds of
type “C-C” and of type “N-H” that are present in a compound, where as an
attribute like “max_C1C-C1H” measures the maximal 3D distance for any pair
of bonds of type “C-C” and type “C-H”.

The numbers and especially the signs in Table 8 seem rather counter-intuitive,
e.g. the presence of “Cl” seems to decrease the likelihood of carcinogenicity.

3.7 BCI fingerprints

This is the most extensive of all feature sets comprising 5212 BCI fingerprints.
BCI fingerprints have been supplied by George Cowan of Pfizer Global Research
and Development. As the top rank is dominated by negative coefficients here,
we have decided to have both the top 10 negatives as well as the top 10 positive
terms depicted in Table 9.

We have simply extracted the definition for each BCI fingerprint from the
supplied dictionary, separating multiple entries with commas. Please consult the
BCI description for more information on the meaning of these descriptors (again
available from the PTC webpage [4]).



Table 7. The top 15 features of the FCSS feature set.

Coeflicient|Coef f * Mean|Feature
-0.952 -0.571|AC-6-06
1.133 0.238{AC-200331
-1.188 -0.099|AC-201131
-1.188 -0.075|AC-1300241
0.516 0.068{AC-1200331
0.483 0.057|AC-1201411
1.175 0.053|AC-500051
-1.323 -0.044|AC-1200241
-0.563 -0.039|AC-66-10
0.446 0.037|AC-1301331
-0.302 -0.035|AC-1201131
-0.288 -0.035|AC-3100331
0.600 0.034|AC-2400331
0.589 0.034|AC-500331
-1.369 -0.033|AC-264021
0.18823 Intercept

4 Conclusions and further directions

Given all the information and figures above reporting rather meager performance
gains overall it is obvious that we currently cannot predict carcinogenicity of
new compounds reliably. Investigating alternative approaches to strict yes/no
decisions like predicting rankings for sets of compounds or even trying to predict
LD50 dosages directly, might be promising.

Additionally, we need to be careful when interpreting coefficients and signs
thereof in a regression context. Signs can be wrong for various reasons that are
discussed in [3]. An attempt to counter these reasons is described in [1]. But
even variables with large standardized coefficients are not necessarily the most
important ones, as work on socalled random forests [2] has shown.

But the major current shortcoming — we suppose — is simply a lack of data
given the diversity of compounds encountered. A few hundred data points just
does not seem to suffice. We are confident that methods similar to those described
here should deliver good prediction rates when supplied with larger datasets de-
scribing at least a few thousand compounds. The methods described above would
scale to datasets of such sizes. Unfortunately, such data currently is proprietory
knowledge of chemical companies only.
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Table 9. The top 10 negative and positive features of the BCI fingerprints feature set.

Coefficient|Coef f * Mean|Feature
-1.194 -1.145|AttrCor-1244: AAAAacAA
-0.591 -0.519|AttrCor-13: AAAAcsAA
-0.588 -0.441|AttrCor-158: AS4AaadAaadAaadA; ASC aaC aaC aaC
-0.967 -0.420|AttrCor-122: ASAAcsAAcsAAcsAA
-0.553 -0.404|AttrCor-190: AA4AaadAaadA, AAC aaC aaC
-0.497 -0.349|AttrCor-1209: ASAAarAAarAAarAAarAAacAA
-0.502 -0.341|AttrCor-2984: AS4AaadAaadAaadAaadAaadA
-0.504 -0.339|AttrCor-317: RCAAarAAarAAarAAarAAarAAar
-0.469 -0.330|AttrCor-2672: ASAAarAAarAAarAAacAA
-0.476 -0.322|{AttrCor-295: ASC aaC aaC aaC aaC aaC
0.600 0.133|AttrCor-487: AP4A2 2 6 4A2 2, APC226 C 22
0.531 0.120|AttrCor-3096: APAA2 37 AA2 2
0.388 0.118| AttrCor-4355: AS5Acs4ArndArn4dArn4A; ASN ¢sC rnC rnC rnC
0.498 0.112|AttrCor-786: AP4A2 3 74A22, APC237C22
0.464 0.111|AttrCor-1565: APAA2 2 6 AA2 2
1.231 0.110|AttrCor-1814: acC arC arC arC arC arC acN
0.360 0.109| AttrCor-381: AS5Acs4Arn4ArndArn4ArndA, ASN ¢sC rnC rnC rnC rnC,
AS5Acs4ArndArndArndArndArn4A; ASN ¢sC rnC rnC rnC rnC rnC
0.336 0.104| AttrCor-1733: AS5Acs4Arn4Arn4A; ASN c¢sC rnC rnC
1.121 0.103|AttrCor-4272: AS6Aac4AardAardAardAardAardAacbA
0.333 0.102| AttrCor-288: AA4Arn4Arn4Acs5A, AAC rnC rnC csN
-0.241 Intercept




