Male Rats < Example > active/1 arg 1: molecule ID We constructed positive examples from "CE", "SE" and "P", and negative examples from "NE" and "N". inactive/1 arg 1: molecule ID We constructed positive examples from "NE" and "N", and negative examples from "CE", "SE", and "P". < Background Knowledge > atom/4 arg 1: molecule ID arg 2: atom ID (only unique within one molecule) arg 3: atom element arg 4: atom charge FUNCTIONAL GROUPS: ================== % C Carbon atom % H/C Hydrogen or Carbon atom % - Single bond % = Double bond % =3= Triple bond % C-N=O % | % O nitro(Mol, C). % C-X halide(Mol, C, HType). % - % C-OH C-O alcohol(Mol, C). % C1-O-C2 ether(Mol, C1, C2). % A-CH3 methyl(Mol, A, C). % C1-C2 (not on aromatic ring) alkane(Mol, C1, C2). % C1=C2 (not on aromatic ring) alkene(Mol, C1, C2). fg_distance/3 arg 1: molecule identifier arg 2: total number of functional groups in molecule arg 3: sum of minimal distances between each fuctional group in molecule fg_number/31 fg_number(Mol, Aromatic, Ring, Alkane, Alkene, Alkyne, Amine, Carbonyl, Ester, CarboxylicAcid, Anhydrid, Amide, AlkylHalide, Halide, Aldehyde, Ketone, Alcohol, Thiol, Ether, ThioEther, Fenol, AmineSalt, Imine, Nitrile, Iso_Cyanate, Nitro, Acetale, SulfonicAcid, SulfonicAmide, PhosphateEster, PhosphorAmidate). This predicate contains for each functional group how often they occur in each molecule. number_of/3 arg 1: functional group arg 2: molecule ID arg 3: how often arg 1 occurs in each molecule number_of(aromatic,A,B) <-- fg_number(A,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(ring,A,B) <-- fg_number(A,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(alkane,A,B) <-- fg_number(A,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(alkene,A,B) <-- fg_number(A,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(alkyne,A,B) <-- fg_number(A,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(amine,A,B) <-- fg_number(A,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(carbonyl,A,B) <-- fg_number(A,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(ester,A,B) <-- fg_number(A,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(carboxylicacid,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(anhydrid,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(amide,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(alkylhalide,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(halide,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(aldehyde,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(ketone,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(alcohol,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(thiol,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(ether,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(thioether,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(fenol,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_,_), B > 0. number_of(aminesalt,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_,_), B > 0. number_of(imine,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_,_), B > 0. number_of(nitrile,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_,_), B > 0. number_of(iso_cyanate,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_,_), B > 0. number_of(nitro,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_,_), B > 0. number_of(acetale,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_,_), B > 0. number_of(sulfonicacid,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_,_), B > 0. number_of(sulfonicamide,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_,_), B > 0. number_of(phosphateester,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B,_), B > 0. number_of(phosphoramidate,A,B) <-- fg_number(A,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,B), B > 0. < Rule > rule/2 arg 1: active(A) or inactive(A) arg 2: ratio (Ratio is the maximum fraction of the numbers of positive and negative examples.) < active > %%% {21,5} %%% rule(active(A),20) <-- atom(A, B, o, 0), atom(A, C, n, 0), number_of(aromatic, A, 2). %%% {14,2} %%% rule(active(A),20) <-- atom(A, B, br, 0). %%% {4,0} %%% rule(active(A),20) <-- number_of(ether, A, 1), number_of(alkene, A, 2). %%% {3,0} %%% rule(active(A),20) <-- atom(A, B, c, 0), atom(A, C, c, 0), alkane(A, C, B, C), number_of(halide, A, 2), number_of(alkane, A, 1). %%% {16,4} %%% rule(active(A),20) <-- number_of(ether, A, 1), number_of(ring, A, 1). %%% {4,1} %%% rule(active(A),20) <-- atom(A, B, c, 0), atom(A, C, c, 0), atom(A, D, c, 0), halide(A, D, D, cl), number_of(aromatic, A, 1). %%% {3,0} %%% rule(active(A),20) <-- atom(A, B, o, -1), number_of(fenol, A, 1), number_of(aromatic, A, 1). %%% {4,1} %%% rule(active(A),20) <-- number_of(ring, A, 6). %%% {6,1} %%% rule(active(A),20) <-- atom(A, B, c, 0), atom(A, C, c, 0), methyl(A, C, C, B), number_of(alkene, A, 1). %%% {4,1} %%% rule(active(A),20) <-- atom(A, B, o, 0), atom(A, C, c, 0), atom(A, D, c, 0), ether(A, B, C, D), number_of(ring, A, 3). %%% {3,0} %%% rule(active(A),20) <-- atom(A, B, c, 0), atom(A, C, o, 0), alcohol(A, B, B), number_of(ring, A, 1). %%% {3,0} %%% rule(active(A),20) <-- atom(A, B, cl, 0), number_of(halide, A, 3), number_of(alkane, A, 2). %%% {4,1} %%% rule(active(A),20) <-- atom(A, B, c, 0), atom(A, C, o, -1), nitro(A, C, B), fg_distance(A, D, _), D >= 4. %%% {3,0} %%% rule(active(A),20) <-- atom(A, B, s, 0), fg_distance(A, C, _), C >= 20. %%% {7,0} %%% rule(active(A),20) <-- atom(A, B, o, 0), atom(A, C, c, 0), atom(A, D, c, 0), ether(A, B, C, D), number_of(ring, A, 1). %%% {5,2} %%% rule(active(A),40) <-- number_of(ketone, A, 1), number_of(carbonyl, A, 1). %%% {29,10} %%% rule(active(A),40) <-- atom(A, B, n, 0), number_of(aromatic, A, 2). %%% {27,18} %%% rule(active(A),40) <-- atom(A, B, o, 0), number_of(aromatic, A, 2). %%% {5,2} %%% rule(active(A),40) <-- atom(A, B, o, -1), atom(A, C, c, 0), nitro(A, B, C). %%% {19,12} %%% rule(active(A),40) <-- number_of(ring, A, 3). %%% {5,3} %%% rule(active(A),40) <-- number_of(imine, A, 1). %%% {6,4} %%% rule(active(A),40) <-- number_of(alkane, A, 2), number_of(ring, A, 2). %%% {6,2} %%% rule(active(A),40) <-- atom(A, B, n, 0), atom(A, C, c, 0), atom(A, D, c, 0), methyl(A, C, C, D). %%% {4,2} %%% rule(active(A),40) <-- fg_distance(A, _, B), B >= 1074.53925568133, number_of(ester, A, 2). %%% {5,3} %%% rule(active(A),40) <-- atom(A, B, c, 0), atom(A, C, c, 0), atom(A, D, n, 0), alkene(A, C, B, C). %%% {16,7} %%% rule(active(A),40) <-- atom(A, B, c, 0), atom(A, C, c, 0), atom(A, D, h, 0), methyl(A, C, C, B). %%% {3,1} %%% rule(active(A),40) <-- atom(A, B, c, 0), atom(A, C, c, 0), atom(A, D, c, 0), alkene(A, D, B, D), number_of(alkane, A, 1). %%% {3,2} %%% rule(active(A),40) <-- atom(A, B, h, 0), number_of(halide, A, 5). %%% {3,2} %%% rule(active(A),40) <-- atom(A, B, c, 0), atom(A, C, c, 0), atom(A, D, cl, 0), alkene(A, D, B, C), number_of(alkene, A, 1). %%% {3,2} %%% rule(active(A),40) <-- fg_distance(A, B, _), B >= 38. %%% {3,1} %%% rule(active(A),40) <-- number_of(ester, A, 1), number_of(alkane, A, 3). < inactive > %%% {8,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), number_of(phosphateester, A, 1). %%% {5,0} %%% rule(inactive(A),0) <-- fg_distance(A, _, B), B >= 413.999912454714, number_of(ring, A, 4). %%% {4,0} %%% rule(inactive(A),0) <-- fg_distance(A, B, C), C >= 348.005856760719, B >= 23, number_of(ring, A, 4). %%% {3,0} %%% rule(inactive(A),0) <-- number_of(carbonyl, A, 4). %%% {3,0} %%% rule(inactive(A),0) <-- number_of(alkene, A, 1), number_of(ring, A, 7). %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), number_of(carbonyl, A, 2). %%% {3,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, D, _), D >= 35. %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, _, D), D >= 58.5483131494649, number_of(ring, A, 1). %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, o, 0), number_of(alkane, A, 1). %%% {8,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), fg_distance(A, C, _), C >= 7, number_of(aromatic, A, 1). %%% {3,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 0), number_of(halide, A, 3). %%% {7,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, D, _), D >= 10, number_of(ring, A, 2). %%% {10,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), fg_distance(A, C, _), C >= 6, number_of(aromatic, A, 1). %%% {6,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), fg_distance(A, _, C), C >= 39.7919366988396, number_of(ring, A, 1). %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 1), atom(A, C, cl, 0). %%% {7,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, _, D), D >= 46.0924735029922, number_of(aromatic, A, 1). %%% {14,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), fg_distance(A, _, C), C >= 2.4745746866886, number_of(aromatic, A, 1). %%% {11,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), atom(A, C, o, 0), fg_distance(A, _, D), D >= 1.28810001552674, number_of(ring, A, 1). %%% {4,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), fg_distance(A, C, _), C >= 3, number_of(ring, A, 2), number_of(aromatic, A, 1). %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 0), atom(A, C, n, 1), number_of(alkane, A, 1). %%% {3,0} %%% rule(inactive(A),0) <-- number_of(acetale, A, 1). %%% {3,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), fg_distance(A, C, _), C >= 7, number_of(halide, A, 2), number_of(aromatic, A, 2). %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 1), number_of(carbonyl, A, 1). %%% {4,0} %%% rule(inactive(A),0) <-- atom(A, B, o, 0), number_of(thioether, A, 1). %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, n, 0), number_of(alkane, A, 1). %%% {3,0} %%% rule(inactive(A),0) <-- number_of(amide, A, 2). %%% {7,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 1), number_of(amine, A, 2). %%% {3,0} %%% rule(inactive(A),0) <-- atom(A, B, na, 0), fg_distance(A, C, _), C >= 2, number_of(alkane, A, 2). %%% {6,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, D, E), E >= 28.3785816011262, D >= 8, number_of(ring, A, 1). %%% {4,0} %%% rule(inactive(A),0) <-- atom(A, B, na, 0), number_of(aromatic, A, 2). %%% {8,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, n, 0), atom(A, D, h, 0), fg_distance(A, E, _), E >= 5, number_of(aromatic, A, 1). %%% {3,0} %%% rule(inactive(A),0) <-- atom(A, B, o, 0), number_of(alkane, A, 11). %%% {9,0} %%% rule(inactive(A),0) <-- atom(A, B, o, 0), fg_distance(A, _, C), C >= 111.560757054469, number_of(alkane, A, 5). %%% {4,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 0), fg_distance(A, _, C), C >= 98.2308871691867, number_of(alkane, A, 5). %%% {7,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, D, _), D >= 29. %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 0), number_of(alcohol, A, 1). %%% {9,0} %%% rule(inactive(A),0) <-- atom(A, B, n, 0), fg_distance(A, C, _), C >= 4, number_of(carbonyl, A, 1), number_of(alkane, A, 1). %%% {3,0} %%% rule(inactive(A),0) <-- atom(A, B, cl, 0), atom(A, C, o, 0), fg_distance(A, D, _), D >= 4, number_of(halide, A, 2), number_of(aromatic, A, 1). %%% {5,0} %%% rule(inactive(A),0) <-- atom(A, B, o, 0), atom(A, C, cl, 0), number_of(alkane, A, 2). %%% {4,0} %%% rule(inactive(A),0) <-- atom(A, B, s, 0), atom(A, C, cl, 0), number_of(ring, A, 2). %%% {31,7} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), atom(A, C, s, 0). %%% {9,1} %%% rule(inactive(A),20) <-- fg_distance(A, _, B), B >= 413.999912454714, number_of(alkene, A, 1). %%% {9,2} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, D, _), D >= 23. %%% {15,3} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), fg_distance(A, C, _), C >= 4, number_of(halide, A, 2). %%% {13,3} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), number_of(alkane, A, 5). %%% {20,5} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, _, D), D >= 97.9749119736475. %%% {6,1} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), fg_distance(A, C, _), C >= 8, number_of(aromatic, A, 1). %%% {51,12} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), fg_distance(A, C, _), C >= 5, number_of(aromatic, A, 1). %%% {25,6} %%% rule(inactive(A),20) <-- fg_distance(A, _, B), B >= 39.7919366988396, number_of(ring, A, 1). %%% {37,9} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), fg_distance(A, _, C), C >= 14.7359376349759, number_of(ring, A, 1). %%% {8,1} %%% rule(inactive(A),20) <-- fg_distance(A, _, B), B >= 358.762605622107, number_of(ring, A, 2). %%% {12,3} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), atom(A, C, h, 0), number_of(alkane, A, 1). %%% {4,1} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), fg_distance(A, C, D), D >= 13.77, C >= 7, number_of(alkane, A, 1). %%% {15,1} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), fg_distance(A, C , _), C >= 3, number_of(ring, A, 2). %%% {7,1} %%% rule(inactive(A),20) <-- atom(A, B, n, 1), number_of(alkane, A, 1). %%% {12,3} %%% rule(inactive(A),20) <-- atom(A, B, n, 0), atom(A, C, cl, 0), fg_distance(A, D, _), D >= 4, number_of(aromatic, A, 1). %%% {5,1} %%% rule(inactive(A),20) <-- atom(A, B, n, 1), number_of(ring, A, 2). %%% {13,3} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), atom(A, C, c, 0), atom(A, D, c, 0), alkane(A, D, C, D), fg_distance(A, _, E), E >= 404.58219170767. %%% {5,1} %%% rule(inactive(A),20) <-- fg_distance(A, _, B), B >= 10.3578885333367, number_of(aromatic, A, 3). %%% {15,1} %%% rule(inactive(A),20) <-- atom(A, B, s, 0), number_of(aromatic, A, 1). %%% {25,5} %%% rule(inactive(A),20) <-- atom(A, B, s, 0), fg_distance(A, _, C), C >= 38.6301116646867. %%% {10,2} %%% rule(inactive(A),20) <-- atom(A, B, n, 0), fg_distance(A, C, _), C >= 5, number_of(alkane, A, 1). %%% {52,13} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), fg_distance(A, _, C), C >= 6.56530946635519, number_of(aromatic, A, 1). %%% {5,1} %%% rule(inactive(A),20) <-- atom(A, B, s, 0), fg_distance(A, _, C), C >= 2.53749772216647, number_of(alkane, A, 2). %%% {26,6} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, D, E), E >= 28.3785816011262, D >= 8. %%% {5,1} %%% rule(inactive(A),20) <-- atom(A, B, cl, 0), fg_distance(A, C, _), C >= 3, number_of(halide, A, 2), number_of(aromatic, A, 1). %%% {12,1} %%% rule(inactive(A),20) <-- fg_distance(A, B, _), B >= 4, number_of(carbonyl, A, 1), number_of(alkane, A, 1). %%% {38,9} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), fg_distance(A, C, D), D >= 3.00527875139338, C >= 6, number_of(ring, A, 1). %%% {8,2} %%% rule(inactive(A),20) <-- atom(A, B, o, 0), atom(A, C, cl, 0), fg_distance(A, D, _), D >= 4, number_of(halide, A, 1). %%% {4,1} %%% rule(inactive(A),20) <-- fg_distance(A, B, _), B >= 5, number_of(amine, A, 1), number_of(alkane, A, 2). %%% {10,1} %%% rule(inactive(A),20) <-- fg_distance(A, B, _), B >= 6, number_of(alcohol, A, 1). %%% {14,6} %%% rule(inactive(A),30) <-- atom(A, B, cl, 0), atom(A, C, h, 0), number_of(alkene, A, 1). %%% {40,15} %%% rule(inactive(A),30) <-- atom(A, B, s, 0). %%% {14,5} %%% rule(inactive(A),30) <-- atom(A, B, h, 0), fg_distance(A, C, D), D >= 348.005856760719, C >= 23. %%% {27,10} %%% rule(inactive(A),30) <-- atom(A, B, h, 0), fg_distance(A, C, D), D >= 343.59032871244, C >= 15. %%% {33,12} %%% rule(inactive(A),30) <-- atom(A, B, o, 0), atom(A, C, cl, 0). %%% {66,26} %%% rule(inactive(A),30) <-- atom(A, B, o, 0), number_of(aromatic, A, 1). %%% {18,5} %%% rule(inactive(A),30) <-- atom(A, B, cl, 0), fg_distance(A, C, _), C >= 3, number_of(halide, A, 2). %%% {34,14} %%% rule(inactive(A),30) <-- atom(A, B, cl, 0), fg_distance(A, C, D), D >= 13.77, C >= 7. %%% {49,19} %%% rule(inactive(A),30) <-- atom(A, B, cl, 0), atom(A, C, h, 0), fg_distance(A, D, E), E >= 3.05992082250505, D >= 4. %%% {15,4} %%% rule(inactive(A),30) <-- atom(A, B, o, 0), atom(A, C, c, 0), atom(A, D, c, 0), alkane(A, B, C, D), number_of(ring, A, 2). %%% {12,5} %%% rule(inactive(A),30) <-- number_of(carboxylicacid, A, 1). %%% {66,27} %%% rule(inactive(A),30) <-- fg_distance(A, _, B), B >= 6.0457016973444, number_of(aromatic, A, 1). %%% {15,5} %%% rule(inactive(A),30) <-- fg_distance(A, B, _), B >= 5, number_of(alkane, A, 1). %%% {14,4} %%% rule(inactive(A),30) <-- fg_distance(A, B, _), B >= 8, number_of(alkane, A, 5). %%% {73,30} %%% rule(inactive(A),30) <-- fg_distance(A, B, C), C >= 2.76960000180532, B >= 3, number_of(aromatic, A, 1). %%% {28,10} %%% rule(inactive(A),30) <-- fg_distance(A, B, C), C >= 21.4710000717385, B >= 8, number_of(ring, A, 2). %%% {27,11} %%% rule(inactive(A),30) <-- atom(A, B, h, 0), fg_distance(A, C, _), C >= 4, number_of(alkane, A, 1). %%% {34,11} %%% rule(inactive(A),30) <-- fg_distance(A, B, C), C >= 4.21472819840678, B >= 7, number_of(ring, A, 1). %%% {43,13} %%% rule(inactive(A),30) <-- fg_distance(A, B, C), C >= 3.00527875139338, B >= 6, number_of(ring, A, 1). %%% {9,3} %%% rule(inactive(A),30) <-- atom(A, B, n, 0), atom(A, C, o, 0), fg_distance(A, D, _), D >= 5, number_of(alkane, A, 2). %%% {9,3} %%% rule(inactive(A),30) <-- atom(A, B, n, 0), atom(A, C, na, 0).